Population
Image processing library in C++
Namespaces | Classes | Functions

template class for tuple of numbers of variable size More...

Namespaces

 pop::Private
 inner product of two vector $<v1,v2>=\sum_i v1_i v2_i$
 

Classes

struct  pop::Private::FunctoProductInner
 
class  pop::Vec< CoordinateType >
 tuple of numbers of variable size for the representation of the coordinate vector More...
 

Functions

template<typename T1 >
pop::Vec< T1 > pop::absolute (const pop::Vec< T1 > &v1)
 absolute value for each coordinate More...
 
template<typename T1 >
pop::Vec< T1 > pop::floor (const pop::Vec< T1 > &v1)
 Rounds x downward for each coordinate. More...
 
template<typename T1 >
F32 pop::normValue (const pop::Vec< T1 > &v1, int p=2)
 norm of the VecN $\vert u \vert^p=(\sum_i |u_i|^p)^{1/p}$ More...
 
template<typename T1 >
F32 pop::normPowerValue (const pop::Vec< T1 > &v1, int p=2)
 norm of the VecN $\vert u \vert^p=\sum_i |u_i|^p$ More...
 
template<typename CoordinateType1 >
F32 pop::distance (const pop::Vec< CoordinateType1 > &u, const pop::Vec< CoordinateType1 > &v, int p=2)
 distance between two vectors $\vert u-v \vert^p$ More...
 
template<typename T1 >
pop::Vec< T1 > pop::round (const pop::Vec< T1 > &v1)
 round functions return the integral value nearest to x rounding half-way cases away for each coordinate More...
 
template<typename T1 >
pop::Vec< T1 > pop::maximum (const pop::Vec< T1 > &v1, const pop::Vec< T1 > &v2)
 maximum of VecN v1 by the VecN v2 $\min(v1,v2)=(\min(v1_0,v2_0),\min(v1_1,v2_1))$ for each coordinate More...
 
template<typename T1 >
pop::Vec< T1 > pop::minimum (const pop::Vec< T1 > &v1, const pop::Vec< T1 > &v2)
 minimum of VecN u by the vector v $\max(v1,v2)=(\max(v1_0,v2_0),\max(v1_1,v2_1))$ for each coordinate More...
 
template<typename T1 >
std::ostream & pop::operator<< (std::ostream &out, const pop::Vec< T1 > &m)
 
template<typename T1 >
std::istream & pop::operator>> (std::istream &in, pop::Vec< T1 > &m)
 
template<typename T1 >
pop::MatN< 2, T1 > pop::productTensoriel (const pop::Vec< T1 > &v1, const pop::Vec< T1 > &v2)
 tensorial product of two vector More...
 

Detailed Description

template class for tuple of numbers of variable size

Function Documentation

template<typename T1 >
pop::Vec<T1> pop::absolute ( const pop::Vec< T1 > &  v1)

absolute value for each coordinate

Parameters
v1VecN
Returns
output VecN
template<typename CoordinateType1 >
F32 pop::distance ( const pop::Vec< CoordinateType1 > &  u,
const pop::Vec< CoordinateType1 > &  v,
int  p = 2 
)

distance between two vectors $\vert u-v \vert^p$

Parameters
uVecN
vVecN
pp-norm
Returns
norm
template<typename T1 >
pop::Vec<T1> pop::floor ( const pop::Vec< T1 > &  v1)

Rounds x downward for each coordinate.

Parameters
v1VecN
Returns
output VecN
template<typename T1 >
pop::Vec<T1> pop::maximum ( const pop::Vec< T1 > &  v1,
const pop::Vec< T1 > &  v2 
)

maximum of VecN v1 by the VecN v2 $\min(v1,v2)=(\min(v1_0,v2_0),\min(v1_1,v2_1))$ for each coordinate

Parameters
v1first VecN
v2second VecN
Returns
output VecN
template<typename T1 >
pop::Vec<T1> pop::minimum ( const pop::Vec< T1 > &  v1,
const pop::Vec< T1 > &  v2 
)

minimum of VecN u by the vector v $\max(v1,v2)=(\max(v1_0,v2_0),\max(v1_1,v2_1))$ for each coordinate

Parameters
v1first vector
v2second vector
Returns
output vector
template<typename T1 >
F32 pop::normPowerValue ( const pop::Vec< T1 > &  v1,
int  p = 2 
)

norm of the VecN $\vert u \vert^p=\sum_i |u_i|^p$

Parameters
v1VecN
pp-norm
Returns
norm
template<typename T1 >
F32 pop::normValue ( const pop::Vec< T1 > &  v1,
int  p = 2 
)

norm of the VecN $\vert u \vert^p=(\sum_i |u_i|^p)^{1/p}$

Parameters
v1VecN
pp-norm
Returns
norm
template<typename T1 >
std::ostream& pop::operator<< ( std::ostream &  out,
const pop::Vec< T1 > &  m 
)
Parameters
outoutput stream
minput Vec
Returns
output stream

stream insertion of the Vec

template<typename T1 >
std::istream& pop::operator>> ( std::istream &  in,
pop::Vec< T1 > &  m 
)
Parameters
ininput stream
mouput Vec
Returns
input stream

stream extraction of the Vec

template<typename T1 >
pop::MatN<2,T1> pop::productTensoriel ( const pop::Vec< T1 > &  v1,
const pop::Vec< T1 > &  v2 
)

tensorial product of two vector

Parameters
v1first vector
v2second vector
Returns
output matrix
template<typename T1 >
pop::Vec<T1> pop::round ( const pop::Vec< T1 > &  v1)

round functions return the integral value nearest to x rounding half-way cases away for each coordinate

Parameters
v1VecN
Returns
output VecN